CSE 4125: Distributed Database Systems

 Chapter-5

 Chapter-5}

Translation of Global Queries to Fragment Queries.
 (part - A)

Outline

- Query Transform.
- Operator Tree.
- Simplification of Operator Tree.
- Equivalence Transformation for Queries (step-bystep).
- Transforming Global Queries into Fragment Queries.

Query Transform

In case of Level - 1 Transparency -

Global Query \rightarrow Fragment Query

Query Transform (contd.)

Steps for Global Query \rightarrow Fragment Query:

1. Non-distributed (Equivalence Transformation for Queries):

- Query \rightarrow Operator Tree.
- Operator Tree \rightarrow Simplified Operator Tree.

2. Distributed:

- Global Query \rightarrow Fragment Query.

Equivalent Expressions of Queries

- \mathbf{Q}_{1} : PJ ${ }_{\text {name, deptnum }} \mathrm{SL}_{\text {deptnum }=15} E M P$
- $\mathbf{Q}_{\mathbf{2}}: \mathrm{SL}_{\text {deptnum }=15} \mathrm{PJ}$ name, deptnum $E M P$

$$
\mathrm{Q}_{1} \leftrightarrow \mathrm{Q}_{2}
$$

Operator Tree

- SUPPLY (SNUM, PNUM, DEPTNUM, QUAN)
- DEPT (DEPTNUM, NAME, AREA, MGRNUM)

Q1: PJ ${ }_{\text {SNUM }}$ SL $_{\text {AREA="Dhaka" }}(S U P P L Y$ JN DEPTNum=dEptnum $D E P T)$

- Operator Tree for Q1:

Simplification of Operator Tree

Criteria to simplify:

Criterion-1:
Appropriate introduce of $S L$ and $P J$ in the tree.

- To get rid of unnecessary attributes.

Criterion - 2:
Push SL and PJ as down as possible in the tree.

- To avoid working on large results (i.e. result of JOIN).

Simplification of Operator Tree (contd.)

- SUPPLY (SNUM, PNUM, DEPTNUM, QUAN)
- DEPT (DEPTNUM, NAME, AREA, MGRNUM)

Operator Tree for Q1

Simplification of Operator Tree (contd.)

- SUPPLY (SNUM, PNUM, DEPTNUM, QUAN)
- DEPT (DEPTNUM, NAME, AREA, MGRNUM)

Simplification of Operator Tree (contd.)

- SUPPLY (SNUM, PNUM, DEPTNUM, QUAN)
- DEPT (DEPTNUM, NAME, AREA, MGRNUM)

Practice Session

Q2: $\mathrm{PJ}_{\text {EMP.name }}\left(\left(E M P \mathrm{JN}_{\text {deptnum }=\text { deptnum }} \mathrm{SL}_{\text {MGRNum }=373} D E P T\right) \mathrm{DF}\right.$ $\left.\left(\mathrm{SL}_{\text {SAL }>35 \mathrm{~K}} E M P \mathrm{JN} \mathrm{N}_{\text {DEPTNUM=DEPTNUM }} \mathrm{SL}_{\text {MGRNUM=373 }} D E P T\right)\right)$

- Operator Tree for Q2?

Practice Session (answer)

Q2: $\mathrm{PJ}_{\text {EMP.NAME }}\left(\left(\underline{E M P} \mathrm{JN}_{\text {DEPTNum }=\text { deptnum }} \mathrm{SL}_{\text {MGRNum }=373} \underline{\text { DEPT }}\right)\right.$ DF

Practice Session (answer)

Q2: $\mathrm{PJ}_{\text {EMP.name }}\left(\left(E M P \mathrm{JN}_{\text {DEPTNum }=\text { deptnum }} \underline{S L}_{\text {MGRNum }=373} D E P T\right) \mathrm{DF}\right.$ $\left(\mathrm{SL}_{\text {SAL }>35 \mathrm{~K}} E M P \mathrm{JN}_{\text {DEPTNUM=DEPTNUM }} \mathrm{SL}_{\text {MGRNUM }=373} D E P T\right)$)

Practice Session (answer)

Q2: $\mathrm{PJ}_{\text {EMP.NAME }}\left(\left(E M P \mathrm{JN}_{\text {DEPTNUM }=\text { DEPTNUM }} \mathrm{SL}_{\text {MGRNum }=373} D E P T\right) \mathrm{DF}\right.$ $\left(\mathrm{SL}_{\text {SAL }} \mathrm{35K} E M P \mathrm{JN}_{\text {DEPTNUM=DEPTNUM }} \mathrm{SL}_{\text {MGRNUM=373 }}\right.$ DEPT))

Practice Session (answer)

Q2: $\mathrm{PJ}_{\text {EMP.name }}\left(\left(E M P \mathrm{JN}_{\text {DEPTnum }=\text { deptnum }} \mathrm{SL}_{\text {MGRNum }=373}\right.\right.$ DEPT) DF $\left.\left(\underline{S L}_{\text {SAL }>35 \mathrm{~K}} E M P \mathrm{JN}_{\text {DEPTNUM=DEPTNUM }}{\underline{S L^{\text {MGRNUM }}=373}} D E P T\right)\right)$

Practice Session (answer)

Q2: $\mathrm{PJ}_{\text {EMP.name }}\left(\left(E M P \mathrm{JN}_{\text {DEPTnum }=\text { deptnum }} \mathrm{SL}_{\text {MGRNum }=373} D E P T\right) \mathrm{DF}\right.$ $\left(\mathrm{SL}_{\text {SAL }>35 \mathrm{~K}} E M P \underline{\mathrm{~J}}_{\text {DEPTNUM=DEPTNUM }} \mathrm{SL}_{\text {MGRNUM }=373}\right.$ DEPT))

Practice Session (answer)

Q2: $\mathrm{PJ}_{\text {EMP.NAME }}\left(\left(E M P\right.\right.$ JN $\mathrm{DEPTNUM}=$ DEPTNUM $\left.\mathrm{SL}_{\text {MGRNUM }=373} D E P T\right) \underline{\text { DF }}$
$\left.\left(\mathrm{SL}_{\text {SAL }>35 \mathrm{~K}} E M P \mathrm{JN}_{\text {DEPTNUM=DEPTNUM }} \mathrm{SL}_{\text {MGRNUM }=373} D E P T\right)\right)$

Practice Session (answer)

Q2: $\underline{\text { P }}_{\text {EMP.NAME }}\left(\left(E M P \mathrm{JN}_{\text {DEPTNUM }}=\right.\right.$ DEPTNum $\left.~ \mathrm{SL}_{\text {MGRNum }=373} D E P T\right)$ DF $\left(\mathrm{SL}_{\text {SAL }} \mathrm{35K} E M P \mathrm{JN} \mathrm{N}_{\text {DEPTNUM=DEPTNUM }} \mathrm{SL}_{\text {MGRNUM=373 }}\right.$ DEPT))

Equivalence Transformation for Queries (step-by-step)

Given query and Operator Tree

Q: $\mathrm{PJ}_{\text {EMP.NAME }}\left(\left(E M P \mathrm{JN}_{\text {DEPTNUM=DEPTNum }} \mathrm{SL}_{\text {MGRNum=373 }}\right.\right.$ DEPT) DF $\left(\mathrm{SL}_{\text {SAL }>35 \mathrm{~K}} E M P \mathrm{JN}_{\text {DEPTNUM=DEPTNUM }} \mathrm{SL}_{\text {MGRNUM=373 }}\right.$ DEPT))

Operator Tree for Q:

Finding Common Sub-expression

- Any common portion?

Finding Common Sub-expression

- Any common portion?

Finding Common Sub-expression

- Any common portion? NOW?

Finding Common Sub-expression

Removing Common Sub-expression

Properties

- R NJNR $\leftrightarrow R$
- R UN R $\leftrightarrow \mathrm{R}$
- R DF R $\leftrightarrow 0$
- R NJN SLF R \leftrightarrow SLF R

- R UN SLF R $\leftrightarrow \mathrm{R}$
- R DF SLf R \leftrightarrow SLnotf R
- (SLf1R) NJN (SLF2 R) \leftrightarrow SLf1and f2 R
- (SLF1 R) UN (SLF2 R) ↔SLF1 or F2 R
- (SLF1R) DF (SLF2R) \leftrightarrow SLF1 Andnot f2 R

Removing Common Sub-expression

Removing Common Sub-expression

Removing Common Sub-expression

PJ EMP.NAME
$S_{\text {NOT }}($ SAL $>35 K)$
R

Removing Common Sub-expression

Removing Common Sub-expression

Simplification

- Now apply criterion - 1 and 2

Simplification

- EMP (EMPNUM, NAME, SAL, TAX, MGRNUM, DEPTNUM)
- DEPT (DEPTNUM, NAME, AREA, MGRNUM)
- Applying Criterion - 1

Simplification

- EMP (EMPNUM, NAME, SAL, TAX, MGRNUM, DEPTNUM)
- DEPT (DEPTNUM, NAME, AREA, MGRNUM)
- Applying Criterion - 2

Simplification

- EMP (EMPNUM, NAME, SAL, TAX, MGRNUM, DEPTNUM)
- DEPT (DEPTNUM, NAME, AREA, MGRNUM)
- Applying Criterion - 2

Transformed Query

$\mathbf{Q}_{\mathbf{T}}: \mathrm{PJ}_{\text {EMP.NAME }}\left(\left(\mathrm{PJ}_{\text {NAME,DEPTNUM }} \mathrm{SL}_{\text {SAL<=35K }} E M P\right) \mathrm{JN}_{\text {DEPTNUM=DEPTNUM }}\right.$ ($\left.\mathrm{PJ}_{\text {DEPtnum }} \mathrm{SL}_{\text {Mgrnum }=373} D E P T\right)$)

Transformed Query

Output:
$\mathbf{Q}_{\mathbf{T}}: \mathrm{PJ}_{\text {EMP.NAME }}\left(\left(\mathrm{PJ}_{\text {NAME,DEPTNUM }} S \mathrm{~S}_{\text {SAL<=35K }} E M P\right) \mathrm{JN}_{\text {DEPTNUM=DEPTNUM }}\right.$ ($\left.\mathrm{PJ}_{\text {DEPTNUM }} \mathrm{SL}_{\text {MGRNUM }=373} D E P T\right)$)

Input:
Q: $\mathrm{PJ}_{\text {EMP.NAME }}\left(\left(E M P \mathrm{JN}_{\text {Deptnum=deptnum }} \mathrm{SL}_{\text {MGRnum }=373} D E P T\right)\right.$ DF $\left.\left(\mathrm{SL}_{\text {SAL }>35 \mathrm{~K}} E M P \mathrm{JN}_{\text {DEPTNUM=DEPTNUM }} \mathrm{SL}_{\text {MGRNUM=373 }} D E P T\right)\right)$

$$
\mathrm{Q} \leftrightarrow \mathrm{Q}_{\mathrm{T}}
$$

Summary

Equivalence Query transformation steps:

1. Generate the equivalent operator tree ($T_{\text {global }}$) for the given query ($\mathrm{Q}_{\text {global }}$).
2. Find the common sub-expression (R) from $\mathrm{T}_{\text {global }}$.
3. Apply rules to remove R and obtain simplified tree $\mathrm{T}_{\text {removed }}$.
4. Apply criteria - 1 and 2 on $\mathrm{T}_{\text {removed }}$ to obtain final simplified operator tree $T_{\text {transformed }}$.
5. Write the query $Q_{\text {transformed }}$ from $T_{\text {transformed }}$.

$$
\text { So, } \mathrm{Q}_{\text {global }} \leftrightarrow \mathrm{Q}_{\text {transformed }}
$$

Transforming Global Queries into Fragment Queries

Why transformation?

- Previous $\mathrm{Q}_{\text {transformed }}$ only works on global relations (i.e. DEPT) , but what about the fragments (i.e. $\mathrm{DEPT}_{1}, \mathrm{DEPT}_{2}$)?
- Need to map the query over the global schema ($\mathrm{Q}_{\text {transformed }}$) to a query over the fragmentation schema ($\mathrm{Q}_{\text {fragments }}$).

Why transformation?

- Previous $\mathrm{Q}_{\text {transformed }}$ only works on global relations (i.e. DEPT) , but what about the fragments (i.e. $\mathrm{DEPT}_{1}, \mathrm{DEPT}_{2}$)?
- Need to map the query over the global schema $\left(Q_{\text {transformed }}\right)$ to a query over the fragmentation schema ($\mathrm{Q}_{\text {fragments }}$).
- We take the final tree ($\mathrm{T}_{\text {tranformed }}$) from the previous steps and transform it, so that it works on the fragments.

Canonical Expression of a Fragment
 Query

$\mathbf{T}_{\text {transformed }}$

Canonical Expression of a Fragment Query

- Say, DEPT has 2 horizontal fragments: DEPT_{1} and DEPT_{2}.
- How to convert this tree so that the leaves becomes the fragment?

Canonical Expression of a Fragment Query

- Say, DEPT has 2 horizontal fragments: DEPT_{1} and DEPT_{2}.
- How to convert this tree so that the leaves becomes the fragment?
- Consider the reconstruction expression.

- Replace the leaf with the subtree of the reconstruction expression.

Canonical Expression of a Fragment Query

- Say, DEPT has 2 horizontal fragments: DEPT_{1} and DEPT_{2}.
- How to convert this tree so that the leaves becomes the fragment?
- Consider the reconstruction expression.

Canonical Expression of a Fragment
 Query

- Do you think it is still ok?

Practice Session

- Apply criterion - 1 and 2

Practice Session (answer)

Practice Session (answer)

Practice Session (answer)

Practice Session

- Write the equivalent query $\mathbf{Q}_{\text {fragments }}$ from $\mathbf{T}_{\text {transformed }}$.

Practice Session (answer)

Global query to Fragment Query (summary)

- $\mathbf{Q}_{\text {global }}$:

PJ EMP.NAME $((E M P$ JN DEPTNUM=DEPTNUM
$S_{\text {MGRNUM }=373}$ DEPT $)$ DF (SL SAL 35K
EMP JN ${ }_{\text {DEPTNUM }}=$ DEPTNUM
$\mathrm{SL}_{\text {MGRNUM=373 }}$ DEPT))

- $\mathbf{Q}_{\text {fragments }}$:

PJ EMP.NAME $\left(\left(P J_{\text {NAME,DEPTNUM }}\right.\right.$
$\left.S L_{\text {SAL }<=35 \mathrm{~K}} E M P\right)$
JN DEPTNUM $=$ DEPTNUM $\left(\right.$ PJ $_{\text {DEPTNUM }}$
$\mathrm{SL}_{\text {MGRNUM=373 }}$ DEPT $_{1}$ UN
$\mathrm{PJ}_{\text {DEPTNUM }} \mathrm{SL}_{\text {MGRNUM }}=373$ DEPT $_{2}$))
(non-distributed)

- $\mathbf{Q}_{\text {transformed }}$: $\mathrm{PJ}_{\text {EMP.NAME }}$ ($\mathrm{PJ}_{\text {NAME,DEPTNUM }}$ $\left.S L_{\text {SAL<=35K }} E M P\right)$
 $\mathrm{SL}_{\text {MGRNUM=373 }}$ DEPT))

(distributed)

Steps for Global query to Fragment Query (summary)

1. Generate the equivalent operator tree ($\mathrm{T}_{\text {global }}$) for the given query $\left(\mathrm{Q}_{\text {global }}\right)$.
2. Find the common sub-expression (R) from $\mathrm{T}_{\text {global }}$.
3. Apply rules to remove R and obtain simplified tree $\mathrm{T}_{\text {removed }}$.
4. Apply criteria - 1 and 2 on $\mathrm{T}_{\text {removed }}$ to obtain final simplified operator tree $T_{\text {transformed }}$.

Steps for Global query to Fragment Query (summary)

1. Generate the equivalent operator tree ($\mathrm{T}_{\text {global }}$) for the given query $\left(Q_{\text {global }}\right)$.
2. Find the common sub-expression (R) from $T_{\text {global }}$ -
3. Apply rules to remove R and obtain simplified tree $\mathrm{T}_{\text {removed }}$.
4. Apply criteria - 1 and 2 on $\mathrm{T}_{\text {removed }}$ to obtain final simplified operator tree $T_{\text {transformed }}$.
5. Apply canonical expression on $T_{\text {transformed }}$ to obtain the canonical form $\mathrm{T}_{\text {canonical }}$.
6. Apply criterion- 1 and 2 on $T_{\text {canonical }}$ to obtain $T_{\text {fragments }}$.
7. Write the query $Q_{\text {fragments }}$ from $T_{\text {fragments }}$.

Practice Problems/ Questions

- Text book: exercise 5.1

